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Abstract

Many non-intrusive combustion diagnostic methods generate line-of-sight projections of a flame field. To
reconstruct the spatial field of the measured properties, these projections need to be deconvoluted. When the
spatial field is axisymmetric, commonly used deconvolution methods include the Abel transform, the onion
peeling method and the two-dimensional Fourier transform method and its derivatives such as the filtered back
projection methods. This paper proposes a new approach for performing the Abel transform numerically, which
avoids the derivative calculation of the projection data. In addition, a new filtered Abel transform method is
developed, which possesses the exactness of the Abel transform and the flexibility of incorporating various
filters in the reconstruction process.

The Abel transform is an exact method and the simplest among these commonly used methods. It is evinced
in this paper that all the exact reconstruction methods for axisymmetric distributions must be equivalent to the
Abel transform because of its uniqueness and exactness. Detailed proof is presented to show that the two
dimensional Fourier methods when applied to axisymmetric cases is identical to the Abel transform.
Discrepancies among various reconstruction methods stem from the different approximations made to perform
numerical calculations.

An equation relating the spectrum of a set of projection data to that of the corresponding spatial distribution
is obtained, which shows that the spectrum of the projection is equal to the Abel transform of the spectrum of the
corresponding spatial distribution. From this equation, if either the projection or the distribution is bandwidth
limited, the other is also bandwidth limited, and both have the same bandwidth. If the two are not bandwidth
limited, the Abel transform has a bias against low wave number components in most practical cases. This
explains why the Abel transform and all exact deconvolution methods are sensitive to high wave number noises.

The filtered Abel transform is based on the fact that the Abel transform of filtered projection data is equal to
an integral transform of the original projection data with the kernel function being the Abel transform of the
filtering function. The kernel function is independent of the projection data and can be obtained separately when
the filtering function is selected. Users can select the best filtering function for a particular set of experimental
data. When the kernel function is obtained, it can be used repeatedly to a number of projection data sets (rows)
from the same experiment. When an entire flame image that contains a large number of projection lines needs to
be processed, the new approach significantly reduces computational effort in comparison with the conventional

approach in which each projection data set is filtered and deconvoluted separately.

Computer codes have been developed to perform the filtered Abel transform for an entire flame field. Measured
soot volume fraction data of a jet diffusion flame are processed as an example.

1. Introduction

A large portion of combustion research effort has been
devoted to the study of axisymmetric flame fields.
Examples include laminar jet flames, both premixed and
diffusion, spherical flames in premixed gases, and flames
surrounding liquid or solid fuel droplets. Many non-
intrusive diagnostic methods are available to provide line-of-
sight projection data of various important parameters in the
flame region. For instance, laser extinction for soot volume
fraction measurement, emission/absorption thermometry for
sooting flame temperature, IR emission for flame
temperature measurement, and laser extinction/scattering for
soot particle size measurement have been reported [1-5].
Figure 1 illustrates the relation between the projection and
the spatial distribution of a flame property in a plane normal
to the streamwise axis of an axisymmetric flame. The

NASA/CR—2003-212121

projection function p(l) is related to the line-of-sight
integration of the flame property f(r) by the following
equation:

o0 = [ ferds 0

With a large number of simultaneous projection lines,
an entire flame image can be obtained instantly. For
example, full field laser extinction for soot volume fraction
[6] and full field two wave lengths soot pyrometry acquire
instantaneous 2-D flame images.

It is a crucial step in experimental data reduction to
reconstruct the spatial distribution of the flame property
based on the measured line-of-sight projections. This
requires the inversion of Eq. (1). Many methods for the



reconstruction of axisymmetric distributions have been
reported. Among them the Abel transform, reported in 1826
[71, gives a concise, exact solution for the reconstruction.
Other commonly used methods are "onion-peeling” and
filtered back projection (FBP). The "onion-peeling” method
is directly based on numerical approximation. Its efficiency
decreases as the number of data points increases. The FBP
method was derived from the two dimensional Fourier
transform method and originally developed for two
dimensional X-ray tomography [8,9]. Owing to its success
in medical applications, it was introduced to study flame and
flow fields of both non-axisymmetric cases [1,2,4] and
axisymmetric cases [3,5,10], assuming angular independence
of the projections in the latter.

The line-of-Sight Projection
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Figure 1. The line-of-sight integration of an
axisymmetric spatial distribution.

This paper evinces that both the onion-peeling method,
in the limiting condition, and the two dimensional Fourier
transform method when used for axisymmetric cases are
identical to the Abel transform method. An alternative form
of the Abel equation is suggested to perform numerical
calculations that avoids calculating derivatives of the
projection data, thus simplifying the algorithms and
eliminating errors caused by derivative calculations. In
addition, the spectral behavior of the Abel transform is
discussed. It is shown that the Abel transform exhibits a
bias towards high wave number components. This accounts
for the rugged results from the Abel transform when it is
directly applied to experimental data. Instead of performing
filtering and reconstruction separately, a new method, the
filtered Abel transform, is developed which adds data filtering
features to the Abel method. The filtered Abel transform is
found to be efficient when a large number of data points
needs to be processed, for example, when processing a full
flame image.
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II. The Abel transform, onion peeling and
filtered back-projection methods

The Abel transform, onion peeling and FBP methods
are the three commonly used reconstruction methods. The
objective of the reconstruction or deconvolution is to find
the spatial distribution f(r) based on the given projection
p(1). Note that in Fig. 1 the radius r can be expressed in
terms of land s as r =V +5* . Substituting s with r and 1

in Eq. (1) yields

o[ 10
w0 =2 7L ®

Equation (2) provides an analytical expression for the
projection function p(l), which turns out to be the Radon
transform of the distribution function f(r) [11].

A well-known analytical inverse of Eq. (2) is the Abel
transform [7],

10 =4[ Fa ®

The beauty of the Abel transform lies in its exactness and
conciseness. Since the Abel transform is an exact solution
to Eq. (2), it can in principle be calculated as accurately as
desired. The accuracy of the results is limited by the
numeric integration and noise in the raw projection data, p(l)
when Eq. (3) is applied to experimental data.

The Abel transform is also unique. This can be deduced
from the fact that f(r) = 0, if p(I) = 0. Based on this
uniqueness, it is inferred that all the rigorous reconstruction
methods must be equivalent to the Abel transform. This
will be elaborated later in the discussion of the FBP method.

Equation (3) involves an improper integration because
the integrand has a singularity at the lower integration limit
and the upper integration limit approaches infinity. Strictly
speaking, the convergence of the integration must be proven
prior to attempting numerical calculations. However, when
dealing with experimental data, it is impossible to discuss
the convergence of the integration rigorously. Instead, the
convergence of Eq. (3) is implicitly assumed with the
physical nature of the quantity f(r) which exists in the
experiment where the data of p(l) are collected.

The direct application of Eq. (3) has some
disadvantages. Equation (3) requires calculating the
derivative of projection data p(I), which are usually noisy.
In addition, the results of the reconstruction may depend on
the scheme for approximating the numerical derivative. For
example, Dasch [12] employed different algorithms to
calculate the derivatives of p(l) in his two-point and three-
point Abel methods. The results obtained from the two



methods differ. To avoid the discrepancies caused by the
derivative algorithms for p(l) and errors introduced by the
derivative calculations, the following equation of the Abel
transform is recommended:

f0) =-1 %’5;’% 1di @

Equation (4) is rigorously equivalent to equation (3), but it

uses the projection data directly instead of their derivative. It

is noticed that the integrand in Eq. (4) also has a singularity
at the lower integration limit. To overcome this difficult, it
is recommended that the domain of integration is divided
into two portions. The first portion covers the
neighborhood of the lower integration limit, say from r to
r+h while the second covers the remainder. Then, Eq. (4) is
rewritten as:

r+h
fO=-% %)L,(g-ldl—%fh—l(’(lp_—;)p,(—,?ldl ®

To resolve the difficulty caused by the singularity in the first
integral in Eq. (5), the open type numeric integration
formulas can be used, which do not evaluate the integrand at
both ends of the integration domain. Steffensen's formulas
[13] are good examples of the open type integration
methods. The three point Steffensen's formula is used by the
author to perform the numerical calculations for the
examples presented later in this paper. It is also noticed that
every set of experimental data is given in a finite domain,
say 1 <L. Forall1> L, p(l) = 0. Thus, the second term in
Eq. (5) can be further simplified to yield:

r+h L

+ __p_ir)_ (6)

m/l_z{Zr+hi

The second term in Eq. (6) can be evaluated using Simpson's
rule since the integrand is regular over the entire domain.
Therefore, Eq. (6) can be discretized directly with open type
integration scheme and Simpson's rule or any other regular
numerical integration formula. No attempt is made to
present the entire discrete form of Eq. (6) in this paper.
Interested readers may consult any popular books in
numerical calculations to develop a suitable algorithm.

In contrast to the Abel transform, the onion-pecling
method is completely based on numerical approximation. In
the onion-peeling method, the entire domain of the spatial
distribution is divided into a series of concentric rings, as
shown in Fig. 2. Within each ring the value of the spatial
function f(r) is assumed to be constant. Thus, Eq. (2) is
approximated by the following summation:
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) =Iz-..siif(§j) "j<§j<’j+1 ()]
where s;; is a matrix of the length of the i-th cord in the j-th
ring which can be expressed as a function of I; and &; based
on plane geometry. &;is a selected radius in the j-th ring at
which the value of the distribution function is considered to
be the average over the j-th ring.

P
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Figure 2. The Onion-peeling method. The entire
reconstruction region is divided into a
series of concentric rings.

Note that the coefficient matrix s;; is independent of the
projection p(l) and the distribution f(r). It can be calculated
based on the arrangement of the dividing rings. Once sjj is
obtained, Eq. (7) can be solved for f(&;) by multiplying p(l)
with the inverse of the matrix s;;:

&) =& I3 p)

r; <§j<rj+l ®

It is obvious that when the width of each ring is
infinitesimally small and the number of the rings approaches
infinity, the results of onion-peeling method must approach
the Abel transform. But, as the number of the rings
increases, the difficulties and the amount of computational
effort needed to invert the coefficient matrix sjj increase
rapidly. The number of basic executions (addition,
subtraction or multiplication ) needed to invert an N by N
matrix is typically proportional to N3, while that for the
Abel transform, Eq. (6), is proportional to N. Therefore, if
a large number of data points of p(l) need to be processed,
the onion-peeling method becomes inefficient, not to
mention the fact that the accumulative roundoff error
increases with the number of executions.



The FBP method was developed by Ramachandran and
Lakshminarayanan in 1971 [8] to perform two dimensional
computed tomography (CT). The method was derived from
the two dimensional Fourier transform method [14] which is
an exact method based on the fact that a planar spatial
distribution can be reconstructed by performing the two
dimensional inverse Fourier transform of a series of one
dimensional Fourier transforms of the projections of the
distribution in various directions, i. .,

FR,¢) = .[~p(l'¢) eﬂdﬂdl L o
and
fra = [ FRy e Pugrar ©

where p(l,¢) is the projection at angle ¢ of a spatial
distribution f(r,0) defined in a polar coordinate system of r
and 6, and R is the independent variable in the transform
domain having unit of wave number per unit length. When
a series of projections p(l,p) are obtained from an
experimental measurement, their Fourier transforms can be
obtained per Eq. (9). Then the obtained Fourier transforms
are substituted into Eq. (10) to yield the spatial distribution
1(t.0).

Ramachandran and Lakshminarayanan [8] showed that
when both the projections p(1,9) and the distribution f(r,6)
are spatially bandwidth limited, the Fourier transform
method can be well approximated by a single convolution
calculation in which the projections obtained in different
directions are convoluted with a kernel function to yield the
spatial distribution. This method is often referred to as
back-projection method. Ramachandran and
Lakshminarayanan's method adds some data filtering features
to the Fourier transform method because the approximation
made to derive the method eliminates the high frequency
components, if present in the projections. The method was
reported to give better reconstruction data than the Fourier
transform method for certain testing sample functions [8].
The back-projection method significantly saves computing
time in comparison with the Fourier transform method and
has become popular in two dimensional reconstruction
calculations.

Shepp and Logan [9] improved Ramachandran’s method
by proposing a new kernel function which is a weighted
average of Ramachandran's kernel function over the two
neighbor grid points of the grid point in calculation. Thus,
Shepp and Logan's kernel function has more smoothing
effect than Ramachandran's. This method is then referred to
as filtered back projection method in some literature. Along
the same line, Ravichandran and Gouldin [15] later proposed
another kernel function derived from a "Kaiser" window
instead of the Heaviside function and found the new kernel
function generated better results for a distribution phantom
than did the standard back-projection method.
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Owing to its popularity in two dimensional
tomography, the FBP method has been introduced to
reconstruct axisymmetric spatial distributions by assuming
identical projections obtained in all directions [3,5,10,12].
However, the FBP method is essentially the two
dimensional Fourier transform method with a certain degree
of data smoothing. Since both the two dimensional Fourier
transform method and the Abel transform method are exact,
it is inferred that when the former is applied to axisymmetric
cases by assuming identical projections in all directions, i.
e. p(L,p) = p(1) in Eq. (9), it must yield the Abel transform.
The detailed proof of this is presented in Appendix A. When
FBP methods are applied to axisymmetric cases, the user
must specify the number of projections, even though they
are all assumed to be identical. In principle, the larger the
number of the projections the more accurate the results.
But, the user has to make a compromise between the
accuracy and amount of the computing effort. It has been
reported that assuming 40 to 100 identical projections is
enough [3,5]. It is noticed that, as shown in Appendix A,
the Abel transform actually implies infinite number of
identical projections.

Therefore, in terms of accuracy, simplicity and rigor,
the Abel transform is superior to both the onion-peeling
method and the FBP method and should be the primary
choice to reconstruct axisymmetric spatial distributions.

III. Spectral behavior of the Abel transform

It is often desirable to know how different wave number
components in a projection contribute to the spatial
distribution or vice versa. This leads to the study of the
spectral relation between the projection and the spatial
distribution. The Abel transform relates a projection to its
corresponding distribution in the physical domain. It is used
as the starting point to derive the spectral relation between
the two in the spectral domain.

Multiplying both sides of Eq. (3) by cos(2rrv) dr, then
integrating from O to infinity with respect to r, and changing
the order of integrations, we obtain the following equation
relating the Fourier transform of a spatial distribution and
that of the projection. A detailed derivation can be found in

Appendix B.

= v F,(vy) dv, an

v V-V

where Fy(v) and F(v1) are the Fourier transforms of f(r) and
p(1), respectively, while v and v, are wave numbers in
corresponding spectral domains. Note that since both p(l)
and f(r) are even functions, their Fourier transforms are
identical to their cosine transforms.

Fiv)=2

It is interesting to note that Eq. (11) resembles Eq. (2).
Fp and F¢ are in Eq. (11) as f(r) and p(l) in Eq. (2). It



immediately follows that the inverse of Eq. (11) must have
the same form as Eq. (3). Thus,

= F,(v)
12
P @

Fp(vl) == ﬁ

Eq. (12) shows that the Fourier transform of a projection is
equal to the Abel transform of the Fourier transform of the
corresponding spatial distribution. The mteresung relations
among the four functions are illustrated in Fig. 3.

Egs. (11) and (12) unveil a number of interesting
features of the Abel transform: first, from Eq. (11), the value
of Fy(v,), where v, is a fixed wave number, contributes
only to those Fy(v) where v is less than v,; second, if Fy(v)
= 0 for all v > vp,, (the maximum wave number for
function F,, to be non-zero), F(v) = 0 for all v > v, and
vice versa. Based on the first feature, the component of a
certain wave number in the distribution function is
determined only by the components in the projection with
higher wave numbers. The second feature indicates that for
both the projection and the distribution, if one is bandwidth
limited, the other is limited in the same bandwidth. Thus,
we conclude that the bandwidth is unchanged by the Abel
transform.

If p(l) and £(r) are not bandwidth limited, a necessary
condition for Egs. (11) and (12) to converge is that both
Fg(v) and F,(v) must approach zero as the wave number v
approaches infinity. In this case, it can be shown that the
Abel transform has a bias towards high wave number
components. Carrying out the integration in Eq. (11) for a
function of F, = av™, where n 2 1, yields that F~v-(-1),
This indicates that for large wave numbers, Fy(v) descends at
a rate of v while the corresponding Fy(V) at a rate of v-®D),
i.e., F(v) descends faster than F{v) with increasing wave
numbers. Translating this to the physical domain we found
that f(r) contains richer high wave number components than
its projection function, p(l). This conclusion is consistent
with the result of basic dimensional analysis. By inspection
of Egs. (2) and (3), it is noticed that the dimension of p(l)
equals that of f(r) multiplied by a length dimension. Thus,
converting f(r) to p(I) has a nature of integration, while the
inverse, the Abel transform, has a nature of differentiation.
Recall that integration of a function in physical domain
corresponds to a division of its Fourier transform by the
wave number in the Fourier domain. Thus integration
results in attenuation of high wave number components,
while differentiation does the opposite. This explains why
differentiation normally exaggerates high wave number
noises and integration tends to smooth noises out. Recall
the fact that the Abel transform is unique and all the exact
reconstruction methods are equivalent to it. We therefore
conclude that all the exact reconstruction methods are
sensitive to high frequency components including noises.
Therefore, it is not surprising to have rugged or noisy
reconstruction results of fairly smooth input projections
when the Abel transform or the two dimensional Fourier
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transform method are used. If high wave number noises are
found to be a problem, a low-pass filter should be used to
remove or reduce those noises prior to the reconstruction
calculations.

Abel Transform
Projection Radon Transf
o) ransform
Cosine transform Cosine transform
Abel Transform Spectrum of
Radon Transform | thedistribution
F(v)

Figure 3. The relations among a spatial distribution,
its projection and their spectrums.

IV. The filtered Abel transform

It is almost inevitable to apply some sort of filters to
the experimental data to reduce noises before performing
reconstruction. Filtering and reconstruction usually are two
separate steps in experimental data reduction. In this paper,
a new method, the filtered Abel transform, is developed
which combines filters with the Abel transform.

Applying a filter to a projection can be carried out in
the Fourier domain by multiplying the spectrum of the
projection by the response function of the filter. Then the
resulting spectrum is converted to the physical domain to
yield the filtered projection. Denoting the spectrum of the
filtered projection by F,«(V), we have

F,{v) =F,(v)- G(v) 13)

where G(v) is the response function of the filter. By the
convolution theorem, the counterpart of Eq. (13) in the
physical domain is

P = [ p®)gt-2) a4

where pg(A) is the filtered projection and g(1) is the filtering
function, the inverse Fourier transform of the response
function G(v). Since the projection p(l) of an axisymmetric
distribution is always an even function, Eq. (14) can be
rewritten as:

oD = [ PO Lgll +2+80-D) 1 (15)



The function in the bracket will be referred to as the filtering
kernel function later in this paper. The Abel transform of
the filtered projection p(1) is

0 =-%fﬁ
(L“pmd[g(lﬂzj*;g(l—l)]a)dl a6)

By changing the order of the integrations, we have

10 =4[ o)

U: [8(’+?',+§"">]3dz)a an

It is noticed that the inner integration in Eq. (17) is the Abel
transform of the filtering kernel function in Eq. (15). By
defining a new kernel function M(A,r) in the following
manner:

M= -4 18 +yz’+_gr(=l =L} (8)

Eq. (17) can be rewritten as:

@) = jo " p) M\ r) (19)

Eqgs. (18) and (19) are referred to as the filtered Abel
transform. To implement this method, the kernel function
M(A.p) is obtained first as the Abel transform of a desired
filter. As recommended before, the Abel transform can be
carried out with Eq. (6). Then, an integral transform of the
projection data with the kernel function M(Ar) is performed
to yield the spatial distribution as described in Eq. (19).
Since the kernel function M(A,r) is independent of the
projection, it can be calculated separately. The method itself
is not associated with any particular filters. Users can select
different filters for a particular set of experimental data to get
the best results. After the kernel function M(Ar) is
obtained, it can be used repeatedly, for instance, if a full
flame image needs to be processed where each row is a
projection of a cross section of the flame. In this case, the
same kernel function M(A,r) can be used for all the
projections to reconstruct the entire spatial distribution of
the flame.

The following are two commonly used low pass
filtering functions. The rectangular response function in the
Fourier domain is

1,
GW) ={ 0

[v|s vy

[V]> v @0
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where v, is the cut-off wave number of the filter. The
corresponding kernel function in the physical domain is

in{2
= S22 @

This filter cuts off all the components with wave number
higher than v,. Another example of low pass filters has a
rectangular window in the physical domain. The two
functions of this filter are

sin (21d,,v)
GCWV)=—Fv— 22)
and
] L l1|<;
0 -{ 0, |I>8. @)

where 1, is the width of the rectangular window. This filter
replaces the projection value at a given point with the
average value of the projection over the width of the
window. Many other low-pass filters are available and can
be used with the filtered Abel transform method.

Finally, it is noticed that the order of the data filtering
process and the Abel transform are not changeable.
Performing the Abel transform on the projection data, then
filtering the results yield different results from filtering the
projection data first followed by the Abel transform. This
can be shown with a few steps of derivation from Egs. (14)
or (15). Since the major error sources are in the raw
experimental data, not in the reconstruction algorithms, the
correct procedure is to filter the projection data first, then
perform the Abel transform. The filtered Abel transform
method is derived in compliance with this sequence although
the selected filter is not directly applied to the projection
data.

V. Examples

A computer code has been developed to deconvolute two
dimensional flame images with the filtered Abel transform.
The two filters described by Egs. (21) and (23) are included
as built-in filters for users to select. The code also has an
option of direct Abel transform without data filtering.
Equation (6) is employed to perform the Abel transform on
the selected filtering function or directly on the projection
data when no filtering is selected. The three point
Steffensen's method followed by Simpson's rule is used to
implement Eq. (6).

A projection of a unit distribution function within a
circle with radius of 0.5 is used to test the code. It is
noticed that the unit distribution is very difficult to
reconstruct because of the discontinuity at the edge of the
distribution which contains rich high wave number



components. However, testing a reconstructon method
against a unit distributon function has a fundamental
significance since all the reconstructon methods are linear
operations and any distributon functions can be considered as
the linear combinatons of unit distributions with various
radii. Figure 4 shows the unit distribution function (labeled
as True value in the plot), its projection and the
reconstructed distribution with the Abel transform without
data filtering.

1-2. v T ; Y g LA g LA 1-2
1.0: NN S F e - -0« Prejection |1 0
[ e True value
go.8 s o JEEITINE Abel 0.8
§ )
g 0.6 \ o.s-g
© 0.4 ; 0'4-o
icl : ] D
§‘ i N’
a 0.2 10.2
0.0f 10.0
I~ b
0.2 1.0.2

0.0 0.2 0.4 0.6 0.8 1.0
Radius

Figure 4. The reconstructed spatial distribution

of a unit testing distribution with the

Abel transfrom.

A total of 50 data points are used across the entire
domain of the independent variable 1 or r. The reconstructed
distribution agrees well with the original distribution in the
most region except for the neighborhood of r = 0.5 where a
sudden change occurs in the original distribution function
and the derivative of the projection approaches infinity. The
overall mean-square error of the reconstructed distribution is
0.041 including the overshoot points.

Three other reconstructed distributions for the same
projection as in Fig. 4 are presented in Fig. 5. They are
generated with the filtered Abel transform with the filtering
function being described in Eq. (23). The three reconstructed
distributions, labeled with fAbel2/1, fAbel2/2 and fAbel2/3
in the plot, are corresponding to three different widths of the
filter window ( I, = 1, 2, 3 ). It can be seen that the filter
significantly reduces the overshoot of the reconstructed
function at the sharp edge of the original distribution. In
principle, it is impossible to remove the fluctuations of the
reconstructed distribution completely if the original
distribution is not bandwidth limited. When the integrals in
Eq. (6) are discretized, the integrand is evaluated at a finite
number of points, i.e., at the integration grid points.
Detailed information of the integrand within integration
grids is lost. The contributions from components with
wave number greater than one over the length of two grids
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are folded to their counterpart with "mirror” wave numbers.
This phenomenon is called aliasing. In Fig. 5, the
reconstructed distributions show different slopes at the sharp
edge of the original distribution, because the filters suppress
the high wave number components to different extents
depending on the width of the filter. The wider the filtering
window the smoother the reconstructed distribution, but the
poorer the response of the reconstructed distribution to the
rapid change in the original distribution. The overall mean-
square error of the three reconstructed distributions are 0.086,
0.101 and 0.119 for L, being 1, 2, 3, respectively.

Although the direct Abel transform yields the smallest
overall mean square error among the four reconstructed

I — —e oo« - Projection 1 0
] ’T:""'"'«C".

r M \\ True value
0.8 - ¥t e fAbel2/1 {0.8
= A\
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2 \
= 0.4t . 0.4;
= [ ) <.
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Figure 5. The reconstructed spatial distribution of
a unit testing distribution with the filted
Abel transfrom

distributions, it generates a cosiderable overshoot at the
falling edge of the distribution data. It is noticed that the
filtered Abel transform with a window width of 1 seems to
be the best compromise between the overall and the local
reconstruction of the original distribution.

Figure 6 shows a laser extinction image for soot
volume fraction measurement of a Burke-Schumann flame.
Propylene was used as the fuel gas supplied at 80 sccm.
The rate of the co-flow air was 30 SLPM. The inner
diameter of the burner was 14.29 mm. A laser beam
generated by a 634 nm diode laser source was expanded and
collimated with a parabolic mirror to cover the whole flame
area. After the collimated laser passed the flame, it was
decollimated and the image of extinction was collected by a
CCD camera. The darkened center portion in Fig. 6 shows
the reduced laser intensity due to the absorption of the soot
particles inside or above the flame. At the test flow rate, the
propylene flame exceeded the smoke height so that the soot
emitted from the flame extends beyond the field of view.
The total extinction of a single laser ray is proportional to



the line-of-sight integration of the spectral absorption
coefficient of the soot particles [16]. The soot volume
fraction is calculated based on the following equation:

= dea{ulf)

where A is the wavelength of the laser beam, E is a constant
of 0.2595 determined by the optical properties of soot
particles, I, and L, are the laser intensities of the background
and soot image, respectively. The symbol A{ } denotes a
reconstruction operator, i.e., the filtered Abel transform in
this paper.

A section of the image from 13.3 mm through 27.8
mm above the burner tip, as shown in Fig. 6, was selected
to perform soot volume fraction calculation. This section
includes 100 pixels streamwise and 69 pixels cross the
flame. Three different deconvolution methods were used in
the calculation, the direct Abel transform, the filtered Abel
transform with a filter with the window width of 1 and that
with the window width of 3. The results are presented in
Fig. 7. Figures 8 and 9 show the same results at two cross
sections of the flame. The results from all the three
methods show that the soot was concentrated in a soot shell
close to the outer visible boundary of the flame. At the
bottom of the plotted area, the soot shell has larger diameter,
but lower peak value, in comparison with the top portion of
the plotted area as shown in Figs. 8 and 9.

Fuel flow rate: 80 SCCM
Air flow rate: 30 SLPM
Burner ID: 14.29 mm
Co-flow OD: 101.6 mm
Laser wavelength: 634

This section of image
data is used to calculate
the soot volume
franction in the flame.
Results are shown in
Figs. 7.

............

Figure 6. The laser extinction image for soot volume
fraction measurement of a propylene diffusion
flame with co-flow air.

The plot on the right side of Fig. 7 shows the results
from direct Abel transform without data filtering. The
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obtained soot volume fraction data fluctuate in a wide range
(also sec Figs. 8 and 9). The peak value reaches as high as
120 ppm, which is within the saturated dark region of the
plot. The scale of the plot is set from O to 40 ppm to have
the best resolution over the most part of the flame. The
random soot distribution outside the frame region is unreal
and resulted from the noise in the background and the
extinction images. The plots at the center and the left of
Fig. 7 show the results of the same flame section from
filtered Abel transform with filter window width being 1 and
3, respectively. The differences among the three plots
indicate that the more the filtering the smoother the results
and the lower the peak values. In general, it is difficult to
determine the best level of data smoothing based only on the
laser extinction images. From the results of above unit
distribution test, it is reasonable to consider the plot in the
middle of Fig. 7 gives the best result among the three.
However, it is suggested that the results from other relevant
experiments, if available, should be considered together with
the laser extinction measurements to yield comprehensive
interpretation of the soot concentration in a flame.

VI. Summary

Because of the exactness and the uniqueness of the Abel
transform, all exact deconvolution methods for axisymmetric
distributions are shown to be equivalent to the Abel
transform. In axisymmetric cases, the spatial distributions
and their projections have the same bandwidth if they are
bandwidth limited. The Abel transform has a bias towards
high wave number components, if the spatial distribution
and the projection are not bandwidth limit. This is also true
for all exact deconvolution methods, since they are
equivalent to the Abel transform. Because of this, the
importance of data filtering is more pronounced when
experimental data need to be deconvoluted. The filtered Abel
transform provides users with the flexibility of applying
various filtering functions and it also speeds up the
deconvolution process when a large number of projection
lines needs to be processed. Further study of the
reconstruction of axisymmetric distribution includes trying
different numerical integration schemes in Eq. (6) to
optimize the algorithm, and testing various filtering
functions for known distributions.
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Figure 7. The soot volume fraction in the section of the propylene flame shown in Fig. 6. The

right-most plot shows the results of direct Abel transform without data filtering,
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with different data filtering parametersata
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Figure 9. Soot volume fraction distribution obtained
with different data filtering parametersat a
cross section of the flame 27.6 mm above
the burner tip.



Appendix A

In this Appendix, it is shown that the when the two
dimensional Fourier Transform method is applied to a one
dimensional axisymmetric problems, it leads to the Abel
Transform. For axisymmetric problems, the projections are
independent of direction ¢. Since the projection p(l) must
be a even function, Eq. (9) in the main text becomes

F(R.$) =F(R) =2 J; " p(l) cos(2nRl) dl (1)

Using integration by parts and invoking the boundary
condition that p(e) -> 0, we have:

e (-
-z |, Pt sin2ary ar=2[” pixcosemrl)a

=F(R) (2a)
On the other hand, the two dimensional Fourier Transform,
Eq. (10) in the main text, and its inverse are reduced to the
Hankel Transform pair when f(r) is a function of r only in a
polar coordinate system:

FR) = J; " P fir) I 2nRr)dr (a)
.
fir) = L "R F(R)Jy(27Rr)dR (da)

where J, is the zero order first kind Bessel function.
Substituting Eq. (2a) into (4a) yields

fin=-1 f Jo27Rr) I p)sin27R1) dl dR (53)

By changing the order of integrations, Eq. (5a) can be
rewritten as:

fir) = % L " o) L " sin(2nRIN 27Rr) dR dI ©6a)

The inner integration is independent of p'(l) and can be
carried out separately yielding:

1

—_ Dr
f " sin 2RI 27Rr) dj=\ V' (7a)
o 0 I<r

Substituting Eq. (7a) into (6a) gives
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(8a)

Equation (8a) the very form of the Abel Transform.

Appendix B
In this Appendix the detailed derivation of the spectral form

_.of the Abel transform is presented. Start with Eq. (3), the
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Abel transform, in the main text and denote the Cosine
transform of f(r) with F{v) and that of p(l) with Fy(v;)
where v and v; are the wave numbers, the independent
variables, in the two Fourier domains. Since f(r) must be an
even function, we have

FAv)=2 L " () cos (2nrv) dr = f_ " f@y e dr (1b)

Substituting f(r) of Eq. (3) into Eq. (1b) yields

FAv)= f [__f P(’) dl]e"""'dr @b)
Define a kernel function in the following manner:
0, lI<r
s ={ o by
Va2

Substituting Eq. (3b) into (2b) and changing the order of the
integrations in Eq. (2b) yields

F=-1[ po[[ kine=ala @)
The inner integral can be carried out as follows.

| rarsear =2 kitrcosemriadr =nienv) (st)
Substituting Eq. (5b) into Eq. (4b), we have
Fv)=- fo " P I,y di ©b)

On the other hand, since Fy(v) is the Cosine transform of
p(l), the inverse of the cosine transform gives:

p=2 fo " F,(v,) cos (2nv;) dv, (7b)

Taking derivatives with respect to 1 on both sides of Eq.
(7b), we have



PO =-4x [ ViF,w) sin @uv,) dv, @)

Substituting Eq. (8b) into (6b) and changing the order of the
integrations, we have

Fv)=4n fo " ViF,Wv) L " sin 2nhv,) Jo(2niv) dl dv, (9b)

The inner integral in Eq. (9b) can be carried out as follows. . .

- 0, v;<v
[ sin Gaivy emivy = { (10b)

0 L v2v

* V1
l —v
Substituting Eq. (10b) into (9b), we have
= V,F,(V,)

Fv)=2| —=E==av 11c)

=2 ¢

Equation (11b) is identical to Eq. (11) in the main text.
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